US DOE Reactor R&D Programs

Phillip Finck

INL, Associate Laboratory Director Nuclear Science and Technology

July 12, 2010

Overview of the NE Reactor Program

Objectives:

- Facilitate operation of existing plants and construction of new plants
- Develop capabilities that support current and future US nuclear enterprise objectives:
 - Create new solutions addressing national priorities including energy security and the environment
 - Enhance US competitiveness
- Facilitate development of new concepts

Phases:

- 1: Support current fleet (ongoing)
- 2: Build new "conventional" large, medium and small reactors (~2020 and beyond)
- 3: Develop advanced systems for non-electric applications (ongoing)
- **4:** Develop advanced systems for electric and/or waste management applications (~ 2040 and beyond)

[programs that support fast reactor development will be discussed in the Transmutation presentation]

Reactor Program Summary (1)

Nuclear Energy

Reactor Program	Benefits	Issues	Supporting Programs *	DOE Capability Development
Phase 1: Light Water Reactor Sustainability (LWRS)	Lifetime extension for existing reactors, uprates	 Aging Safety margins Fuel performance Instrumentation & control 	• (LWRS) • M&S Hub • NEET • NEAMS	 Material sciences Modeling and simulation Fuel development Instrumentation and control Risk informed safety margins Fabrication
Phase 2: Small Modular Reactors (SMR)	Distributed and affordable power, incremental capacity	LicensingCostPerformance	 (Reactor Concepts RD&D) M&S Hub NEET NEAMS 	

^{*} Programs identified in the President's FY 2011 budget proposal

Reactor Program Summary (2)

Nuclear Energy

Reactor Program	Benefits	Issues	Supporting Programs *	DOE Capability Development
Phase 3: Next Generation Nuclear Plant	High efficiency electricity and high temperature heat generation	LicensingPerformance	(Reactor Concepts RD&D / NGNP) NEET / M&S Hub NEAMS	 Heat transport systems Modeling and simulation Advanced fuels High temperature materials
Phase 4: Future Reactors - Once Through - Advanced Fuel Cycles	Once Through	Once Through	(Reactor Concepts RD&D) NEET/M&S Hub NEAMS FCRD	 High burnup fuel development Development of fundamental process understanding Materials sciences Energy conversion improvements Modeling and simulation

■ Base activities that support multiple reactor programs include:

- Nuclear Energy Enabling Technologies (NEET)
 - Transformative Nuclear Concepts R&D
 - Crosscutting Technology Development
 - Energy Innovation Hub for Modeling and Simulation (M&S Hub)
- Nuclear Energy Advanced Modeling and Simulation (NEAMS)

Life Extension

Nuclear Energy

Benefits:

- Current fleet provides >70% of nongreenhouse gas emitting electricity
- Existing reactors reduce burden of new clean electricity that will need to come online
- Favorable economics

Issues:

- Current nuclear plants will retire between 2029 – 2056
 - New nuclear build rate will not replace plant retirements
 - Cost to replace the current fleet exceeds \$600B
 - Steep reduction in emission-free generation
- Light Water Reactor Sustainability (LWRS) Program
 - Possible basis for life time extension
 - Provides basis for uprates

Phase 1: Support Current Fleet

Life Extension R&D

R&D Program Goals

- Develop fundamental scientific basis to allow continued safe long-term operation of existing LWRs
- Develop improvements that contribute to long-term economic viability of existing nuclear power plants

R&D Program Scope

- Materials Aging and Degradation
- Risk-Informed Safety Margin Characterization
- Efficiency improvements
- Advanced Instrumentation and Controls
- Advanced Fuel Development

Phase 2: Build New Reactors

Small Modular Reactor (SMR) Development

 The US is moving aggressively toward designing and promoting SMRs, and DOE plans to provide critical support

Benefits:

- Revitalization of US industry leadership in innovative nuclear design, engineering and manufacturing
- Allows nuclear power option to be more affordable and suitable to a broader range of domestic and international customers
- Jobs span high-tech manufacturing, technical and operational fields
- Allows smaller initial investment and incremental capacity addition
- Reduces siting challenges such as access, electrical grid and water rights

Issues:

- Technical challenges such as:
 - · Different designs requiring different measurement and control options
 - Integral designs impose material, inspection, and maintenance challenges
- Regulatory challenges such as:
 - · Departure from traditional licensing experience
 - Accommodation of safer and simpler designs
- Institutional challenges such as:
 - Performance uncertainty introduced by new designs and technologies
 - Cost (economies of series vs economies of scale)

Small Modular Reactor RD&D

Design certification partnerships

Establish cost-shared projects with industry partners to accelerate design certification

SMR assessment tools

 Support development of new analysis tools, codes and standards, and cost models to support objective assessments of SMR safety, performance and economics

■ SMR technology R&D

 Develop technologies that further minimize costs or enable advanced SMR features and functionality

Advanced SMR concepts

 Develop innovative concepts that use advanced technologies to achieve expanded SMR functionality

WEC IRIS Reactor Concept

NuScale Reactor Concept

Reactor Concepts RD&D

- Future progress will be enabled by developing a strong set of capabilities that enable significant (possibly transformational) solutions
- New concepts, with significantly improved performance, have been proposed and need to be fostered
 - A typical example is the AHTR
 - High temperature, molten salt cooled, TRISO fueled, compact reactor
- We will rely on competitive processes to create new ideas

Phase 3: Develop Advanced Systems for Non-Electric Applications

Next Generation Nuclear Plant and New Markets for Nuclear Power

Benefits:

- Can facilitate a transition away from fossil fuels to secure environmentally sustainable energy for industry
 - Transition will significantly enhance the nation's energy security and independence

Issues:

- Technical challenges such as:
 - Development of fuels, materials, and models
- Regulatory challenges such as:
 - Departure from traditional licensing experience
 - Operational differences such as staged construction and multi-module control systems
- Institutional challenges such as:
 - Performance uncertainty introduced by new designs and technologies
 - Adoption of non-electric uses for nuclear energy

Process Heat Applications R&D

Nuclear Energy

- High Temperature Gas Reactor
 - Fuels
 - Graphite
 - High Temperature Materials
 - Design and Safety Methods
- Reactor End User Interface
 - Heat Transport
 - Hydrogen and hybrid systems
- Licensing, Economics and the Business Case
- Advanced reactors for resource extension and waste management (i.e., Phase 4) will be discussed under the Fuel Cycle topic

Crosscutting Programs

Nuclear Energy Enabling Technologies

- The Nuclear Energy Enabling Technologies (NEET) Technology Development Program will support crosscutting activities relevant to multiple reactor and fuel cycle concepts
 - Promotes generation of new ideas and fosters exploration of technology options
- The program includes three elements:
 - Transformative Nuclear Concepts R&D
 - Crosscutting Technology Development
 - Energy Innovation Hub for Modeling and Simulation

Transformative Nuclear Concepts R&D

- Encourages identification and development of "outside the box" options associated with all aspects of civilian nuclear energy programs
 - Ensures that good ideas have sufficient outlet for exploration
- Scope of eligible topics is not specific to any on-going mission activities
 - Investigator-initiated research selected through open competition
 - Will provide needed creative component to NE programs
 - Needs to be integrated with other competitive elements of NE programs
 - Encourages broad participation across national laboratories, universities, research institutions, and industry

Crosscutting Programs

Crosscutting Technology Development

- Provides either crosscutting or enabling technologies to support multiple reactor concepts
- "Base" program for underlying technologies with broad application focus
- Key to success for long term NE vision
- Crosscuts include:
 - Reactor Materials, Advanced Sensors and Instrumentation, Proliferation Risk Assessment, Advanced Methods for Manufacturing

Crosscutting Programs

Modeling and Simulation Energy Innovation Hub

- Consortium for Advanced Simulation of Light Water Reactors (CASL) mission:
 - Develop and apply the virtual reactor to address critical performance goals for nuclear power

1

Reduce capital and operating costs per unit energy by:

- Power uprates
- Lifetime extension

2

Reduce nuclear waste volume generated by enabling higher fuel burnups

3

Enhance nuclear safety
by enabling high-fidelity
predictive capability
for component and
system performance
from beginning
of life through failure

Crosscutting Programs

CASL vision: Create a Virtual Reactor for Predictive Simulation of LWRs

Leverage

- Current state-of-the-art neutronics, thermal-fluid, structural, and fuel performance applications
- Existing systems and safety analysis simulation tools

Develop

- New requirements-driven physical models
- Efficient, tightly-coupled multiscale/multi-physics algorithms and software with quantifiable accuracy
- Improved systems and safety analysis tools
- **■** UQ framework

Deliver

- An unprecedented predictive simulation tool for simulation of physical reactors
- Architected for platform portability ranging from desktops to DOE's leadership-class and advanced architecture systems (large user base)
- Validation basis against 60% of existing U.S. reactor fleet (PWRs), using data from TVA reactors
- Base M&S LWR capability

Crosscutting Programs

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Strategy

- Continuously increasing capability for predictive simulation of:
 - Nuclear reactors
 - Fuels
 - Safeguarded separations
 - Waste forms in a repository environment
- Modeling and simulation capabilities that can be used to create scientific understanding, design, and license nuclear energy technologies for:
 - Sustainment of the current LWR fleet
 - Near term deployment of new advanced reactors
 - Innovative uses of nuclear energy
 - Proper disposal of waste
 - Closing the fuel cycle
- Flexible capabilities that can be applied to different types of nuclear energy technologies

Summary: Developing Future Reactors

- Significant reactor performance improvements are possible, for example:
 - Higher efficiencies from higher temperatures
 - Lower costs from more compact designs and breakthrough materials
 - Higher reliability from improved fabrication techniques
 - Lower volumetric waste production from higher burnup fuels
 - Safer and cheaper concepts enabled by modern modeling and simulation
- Reactor programs support NE's goals as defined in the R&D Roadmap
- DOE will also support US industry competitiveness
 - Facilitate construction / licensing
 - Provide capabilities
 - Envision and develop new concepts